廣西工業(yè)職業(yè)技術(shù)學(xué)院人工智能實訓(xùn)室簡介
2024-05-09 21:07【實訓(xùn)室簡介】
廣西工業(yè)職業(yè)技術(shù)學(xué)院電子信息學(xué)院人工智能綜合實訓(xùn)室位于校園核心教學(xué)區(qū)的精工B座203房間,周圍設(shè)有便捷的交通和多功能的學(xué)習(xí)空間。實訓(xùn)室占地80平方米,空間設(shè)計充分考慮了教學(xué)與實踐的需要,布局合理,動線流暢。配備了60個獨立的工位,為每位學(xué)生提供了充足的實操空間和個人學(xué)習(xí)領(lǐng)地。
實訓(xùn)室內(nèi)部設(shè)備先進,共配備了2臺高端機器人,包括提供客戶服務(wù)交互演示的服務(wù)機器人和支持高級語音識別及響應(yīng)訓(xùn)練的語音機器人,這些機器人不僅用于演示和教學(xué),也是學(xué)生研究和實驗的重要工具。此外,還擁有16套人工智能教學(xué)實驗箱,其中包括了傳感器、執(zhí)行器、處理器等一系列模塊,便于學(xué)生在模擬各類環(huán)境下開展機器學(xué)習(xí)和深度學(xué)習(xí)模型的構(gòu)建與訓(xùn)練。
這些設(shè)備主要用于支持機器學(xué)習(xí)、深度學(xué)習(xí)模型訓(xùn)練、數(shù)據(jù)分析等教學(xué)和研究活動,對于提升學(xué)生的實際操作能力、工程實踐經(jīng)驗和科研水平均起到了重要推動作用。實訓(xùn)室的資產(chǎn)總值達120萬元,由電子信息學(xué)院統(tǒng)一管理,并指派了資深教師擔(dān)任專業(yè)負(fù)責(zé)人,不僅負(fù)責(zé)日常的維護和管理工作,還定期對實訓(xùn)室設(shè)備進行升級和維護,保證設(shè)備的先進性和功能的完善性,確保實訓(xùn)室能夠適應(yīng)最新的教學(xué)需求和技術(shù)發(fā)展,從而保障學(xué)生在科學(xué)研究和技能培養(yǎng)上的深度學(xué)習(xí)體驗,使其能在未來的工作中占據(jù)優(yōu)勢。
實訓(xùn)室不僅是教學(xué)活動的場所,也是學(xué)生開展創(chuàng)新實驗和科研項目的重要基地,多次承擔(dān)了校內(nèi)外的技術(shù)競賽和創(chuàng)新大賽。通過在實訓(xùn)室中的學(xué)習(xí)和實踐,學(xué)生能夠積累豐富的實際項目經(jīng)驗,為將來走向職業(yè)生涯打下堅實的基礎(chǔ)。
【實訓(xùn)室功能】
人工智能綜合實訓(xùn)室不僅是學(xué)生們獲取知識的場所,更是實踐技能、開展科研和進行創(chuàng)新的重要平臺。本實訓(xùn)室的功能多元,旨在為學(xué)生提供全方位的學(xué)習(xí)體驗和專業(yè)技能培養(yǎng)機會。
教學(xué)課程實踐: 實訓(xùn)室支持人工智能基礎(chǔ)、數(shù)據(jù)結(jié)構(gòu)、機器學(xué)習(xí)、深度學(xué)習(xí)、智能控制、圖像處理等多門核心課程的實際操作與實驗活動。學(xué)生在此可以驗證理論知識并通過項目實施,加深對專業(yè)知識的理解和把握。
專業(yè)技能培訓(xùn): 為了提高學(xué)生的專業(yè)素質(zhì),實訓(xùn)室經(jīng)常舉辦各類工作坊、培訓(xùn)研討會,引進行業(yè)內(nèi)資深專家進行面對面輔導(dǎo),以及最新行業(yè)趨勢的分析討論。
科研項目與學(xué)術(shù)競賽: 基于實訓(xùn)室出色的實驗設(shè)施和技術(shù)支持,學(xué)生可以參與到高水平的科研項目中,與導(dǎo)師合作攻關(guān),參加國內(nèi)外的學(xué)術(shù)競賽和挑戰(zhàn),如人工智能設(shè)計大賽、編程馬拉松以及各類創(chuàng)新創(chuàng)業(yè)比賽。
專業(yè)認(rèn)證考試: 本實訓(xùn)室可用于人工智能相關(guān)職業(yè)技能證書的培訓(xùn)和考試,比如1+X,HCIP/HCIE認(rèn)證考試等,幫助學(xué)生提升職業(yè)競爭力。
師資培訓(xùn)和教改實踐: 教師也可利用實訓(xùn)室進行教學(xué)方法的研究與探索,以及新教學(xué)工具和技術(shù)的嘗試。實訓(xùn)室經(jīng)常承擔(dān)教學(xué)改革試點項目,推動教育教學(xué)的創(chuàng)新發(fā)展。
通過這些豐富的功能,實訓(xùn)室為電子信息學(xué)院培育高素質(zhì)、技術(shù)嫻熟的人工智能應(yīng)用技術(shù)人才提供了有力保障,同時也加強了學(xué)院與行業(yè)之間的交流與合作,提高了學(xué)生的就業(yè)競爭力和未來發(fā)展?jié)摿Α?/span>
來源于: 廣西工業(yè)職業(yè)技術(shù)學(xué)院電子信息學(xué)院
相關(guān)產(chǎn)品:
AI人工智能實驗箱:開啟您的AI學(xué)習(xí)之旅!
2017年,Transformer出現(xiàn)在一篇論文《 Attention Is All You Need》中被引入,并在自然語言處理中得到廣泛應(yīng)用。
2022年:ChatGPT的橫空出世
2022年11月,OpenAI發(fā)布了基于Transformer模型的大型語言模型ChatGPT,引發(fā)了全世界的AI浪潮,被《大西洋》雜志評為“年度突破”,并稱其“可能會改變我們對工作方式、思考方式以及人類創(chuàng)造力的真正含義的想法”。
2023年:AI元年,全球競速,勢不可擋!
中國:國務(wù)院發(fā)布《新一代人工智能發(fā)展規(guī)劃》,將人工智能列為國家戰(zhàn)略,目標(biāo)到2030年成為世界領(lǐng)先者。
美國:發(fā)布《人工智能國家戰(zhàn)略》,持續(xù)加大投入,保持領(lǐng)先優(yōu)勢。
歐盟:發(fā)布《人工智能白皮書》,將人工智能視為歐洲未來經(jīng)濟增長引擎。
全球:人工智能在醫(yī)療、技術(shù)、教育、交通、金融、娛樂等領(lǐng)域廣泛應(yīng)用,帶來前所未有的變革。
AI 的新時代已經(jīng)降臨,而你,準(zhǔn)備好了嗎?
AI人工智能實驗箱專為高校人工智能教學(xué)打造的全功能平臺,讓您輕松掌握AI技術(shù),開啟智能時代的大門!
三大核心優(yōu)勢,助您一路領(lǐng)先:
1. 由淺入深,循序漸進
從基礎(chǔ)的GPIO擴展到深度學(xué)習(xí)的AI視覺、AI聽覺,上海頂邦A(yù)I平臺提供完整的學(xué)習(xí)路徑,讓您一步步掌握AI知識體系,輕松應(yīng)對各種挑戰(zhàn)。
AI人工智能實驗箱將理論與實踐完美結(jié)合,豐富的實驗項目讓您在實踐中學(xué)習(xí),在應(yīng)用中鞏固,真正將AI知識融會貫通。
3. 開放靈活,激發(fā)創(chuàng)新
開放的GPIO接口和模塊化設(shè)計,支持個性化功能開發(fā),讓您將創(chuàng)意變?yōu)楝F(xiàn)實,打造屬于自己的AI項目。
用戶的評價:
1. 來自高校教師的評價:
“課程內(nèi)容豐富,教學(xué)效果杠杠的,學(xué)生們都搶著學(xué)AI!”
“以前教AI,我頭都大了,各種理論知識,學(xué)生們聽得云里霧里,F(xiàn)在有了上海頂邦A(yù)I實驗箱,我輕松多了,直接讓學(xué)生做實驗,學(xué)得賊快!”
2. 來自學(xué)生的評價:
“以前我對AI一點都不懂,現(xiàn)在我都能開發(fā)自己的AI項目了!”
“課程由淺入深,循序漸進,小白也能輕松上手。老師講得也好,我聽得懂,學(xué)得會!”
3. 來自校領(lǐng)導(dǎo)的評價
“AI人工智能實驗箱能夠幫助學(xué)生快速掌握AI知識和技能。平臺提供的實驗項目也非常實用,能夠幫助學(xué)生將理論知識應(yīng)用到實踐中。”
“我們相信,借助上海頂邦人工智能實驗箱,我們學(xué)校的AI教學(xué)水平將不斷提升,學(xué)生們也將能夠在未來的AI時代取得更大的成就。”
AI人工智能實驗箱不僅是學(xué)習(xí)AI的最佳工具,更是您通往AI未來的橋梁!
一、AI核心
GPU :128核 NVIDIA Maxwell GPU
CPU :4核cortex-A57處理器
內(nèi)存:4 GB LPDDR 25.6 GB/s
算力:472 GFLOP
基于NVIDIA強大的Al計算能力,系統(tǒng)內(nèi)核是一個小巧卻功能強大的計算機,它可以讓你并行運行多個神經(jīng)網(wǎng)絡(luò)、對象檢測、分割和語音處理等應(yīng)用程序, 系統(tǒng)搭載四核cortex- A57處理器,128核Maxwell GPU及 4GB LPDDR內(nèi)存,帶來足夠的Al計算能力,提供472GFLOP算力,并支持一系列流行的Al框架和算法,比如TensorFlow、Pytorch、 caffe/caffe2、Keras、MXNET等。
二、系統(tǒng)框架與AI框架
1. 系統(tǒng)預(yù)裝ubuntu18.04操作系統(tǒng),所有環(huán)境代碼庫文件均已安裝,開機即用。
Ubuntu 18.04 LTS在云計算領(lǐng)域效率極高,特別適用于機器學(xué)習(xí)這樣的存儲密集型和計算密集型任務(wù)。Ubuntun 長期支持版本可以獲得 Canonical 官方長達五年的技術(shù)支持。Ubuntu 18.04 LTS 還將附帶了 Linux Kernel 4.15,其中包含針對 Spectre 和 Meltdown 錯誤的修復(fù)程序。
2. 提供詳細(xì)的python開源范例程序
根據(jù)TIOBE最新排名 ,Python已超越C#,與Java,C,C++一起成為全球前4大最流行語言。國內(nèi)目前百度指數(shù)搜索量已經(jīng)超越Java,與C++,即將成為國內(nèi)最受歡迎的開發(fā)語言。
Python被廣泛應(yīng)用于后端開發(fā)、游戲開發(fā)、網(wǎng)站開發(fā)、科學(xué)運算、大數(shù)據(jù)分析、云計算,圖形開發(fā)等領(lǐng)域;Python在軟件質(zhì)量控制、提升開發(fā)效率、可移植性、組件集成、豐富庫支持等各個方面均處于先進地位。python具有 簡單、易學(xué)、免費、開源、可移植、可擴展、可嵌入、面向?qū)ο蟮葍?yōu)點,它的面向?qū)ο笊踔帘萰ava和C#.net更徹底;
3. JupyterLab編程
JupyterLab是一個基于Web的交互式開發(fā)環(huán)境,用于Jupyter筆記本、代碼和筆記本、代碼和數(shù)據(jù).JupyterLab非常靈活配置和排列用戶界面,以支持?jǐn)?shù)據(jù)科學(xué)、科學(xué)計算和機器學(xué)習(xí)中廣泛的工作流.JupyterLab是可擴展的和模塊化的編寫插件,添加新組件并與現(xiàn)有組件集成
4. 多種AI框架
OpenCV計算機視覺庫,TensorFlow AI框架,Pytorch AI框架等
三、AI人工智能實驗箱特點
支持多模態(tài)輸入,跨語言編程,優(yōu)化深度學(xué)習(xí)模型
人體姿態(tài)估計,應(yīng)用于實際場景
實時背景移除,基于深度學(xué)習(xí),高效實時移除背景
目標(biāo)檢測,多目標(biāo)檢測能力強
語義分割,像素級別的詳細(xì)分類,適用于環(huán)境感知
單目深度,無需特殊相機,利用全卷積網(wǎng)絡(luò),可從單個圖像推斷相對深度,應(yīng)用廣泛。
語音情感識別,采用Mobilenet_v2模型處理語音情感,輕量化、高效
六自由度機械臂,智能舵機,ROS控制,適用于AI視覺顏色分揀實驗
車牌識別,使用Teseract-OCR 引擎,識別準(zhǔn)確率高,使用場景廣泛。
ROS機器人系統(tǒng),跨平臺兼容,代碼開源,模塊化設(shè)計,通用性強靈活性高。
AI聽覺主板,具備高質(zhì)量音頻處理和語音服務(wù),搭載Snowboy喚醒詞檢測引擎,可以完成語音情感識別、圖靈機器人、語音對話等實驗。
四、硬件資源
一、硬件資源
功能單元 | 參數(shù) | 功能描述 |
實驗箱 | 外形尺寸:≥610*440*240mm; | 外箱采用鋁木合金材料,四周安裝尼龍防護墊,實驗箱體內(nèi)部包含存儲空間,可以妥善存放模塊及配件,打開方式為按壓彈出。 |
AI運算單元 |
GPU :128核 NVIDIA Maxwell GPU; CPU :4核cortex-A57處理器; 內(nèi)存:4 GB LPDDR 25.6 GB/s; 算力:472 GFLOP; 核心擴展:擁有最少4個USB3.0接口,支持HDMI和DP視頻接口,一路M.2接口的單路PCIE,并安裝有散熱風(fēng)扇, 40pin GPIO; 網(wǎng)絡(luò):千兆以太網(wǎng)口、無線網(wǎng)卡支持2.4Ghz/5GHZ,支持藍牙4.2; |
安裝Ubuntu 18.04 LTS+ROS Melodic操作系統(tǒng),集成JupyterLab開發(fā)環(huán)境、Anaconda 4.5.4虛擬環(huán)境,支持一系列流行的AI框架和算法,比如TensorFlow、caffe/caffe2、Keras、Pytorch、MXNET 等,系統(tǒng)安裝有OpenCV計算機視覺庫,TensorFlow AI框架,Pytorch AI框架。 |
機械臂 |
機械臂自由度:5自由度+夾持器,200g有效負(fù)載,臂展350mm; 舵機方案:15Kg*5+6Kg*1智能串行總線舵機; 材質(zhì):陽極氧化處理鋁合金; |
用于機器人運動學(xué)與機器人系統(tǒng),可以完成夾持積木等動作。 |
嵌入式核心主板 |
接口:6個總線舵機接口, PWM舵機接口,i2C接口,除AI核心板外還支持STM32和Raspberry Pi; OLED:顯示CPU占用,顯示內(nèi)存占用,顯示IP地址等基礎(chǔ)信息; 按鍵:K1+K2鍵+RESET鍵; 1 個RGB燈; |
用于支持機械臂動作。 |
攝像頭 | 采用USB接口,30萬像素,110度廣角攝像頭,480P分辨率(600*480) | AI視覺實驗,如垃圾分揀等實驗。 |
AI聽覺單元 |
音頻芯片:采用SSS1629音頻芯片; 麥克風(fēng):板載兩個高質(zhì)量MEMS硅麥克風(fēng); 接口:標(biāo)準(zhǔn)3.5mm耳機接口、雙通道喇叭接口; |
采用USB接口設(shè)計,免驅(qū)動,多系統(tǒng)兼容,可左右聲道錄音,音質(zhì)更加。可以完成AI聽覺類實驗。 |
傳感器實驗?zāi)K |
傳感器實驗?zāi)K將Jetson nano的GPIO接口引出,方便完成GPIO實驗,并且包含以下實驗課程:雙色LED、 繼電器、 輕觸開關(guān)按鍵、U 型光電傳感器、模數(shù)轉(zhuǎn)換、PS2 操縱桿、電位器、模擬霍爾傳感器、光敏傳感器、火焰報警、氣體傳感器、觸摸開關(guān)、超聲波傳感器距離檢測、旋轉(zhuǎn)編碼器、紅外避障傳感器、氣壓傳感器、陀螺儀加速度傳感器、循跡傳感器、直流電機風(fēng)扇模塊、步進電機驅(qū)動模塊; |
傳感器實驗?zāi)K可以更好的幫助學(xué)習(xí)者更加快速的入門Jetson nano的GPIO控制,從基礎(chǔ)入手,完成實驗項目。同時引出的GPIO和可移動的模塊也使我們后續(xù)的使用和開發(fā)更加方便。 |
顯示屏 | 10寸顯示屏,HDMI接口,1080P分辨率。 | 顯示屏傾斜安裝,傾斜角度大于5°。用于操作系統(tǒng)顯示。 |
鍵盤鼠標(biāo) | 干電池供電,無線藍牙連接。 | 用于系統(tǒng)控制。 |
五、AI人工智能課程
AI人工智能實驗箱在設(shè)計時,考慮到不同基礎(chǔ)學(xué)習(xí)者的需求,力求使用更易理解的學(xué)習(xí)方式傳遞更加詳細(xì)的知識。本實驗平臺對各類使用者均有一定的學(xué)習(xí)幫助,特別是在在校大學(xué)生和研究生,能夠幫助學(xué)生從初學(xué)逐漸過渡到深入學(xué)習(xí)。也可以幫助他們完成畢業(yè)設(shè)計或者學(xué)術(shù)論文。在人工智能遍地開花的今天,人工智能在 各個領(lǐng)域都發(fā)揮了重要的作用,為產(chǎn)品賦能愈來愈稱為各大企業(yè)的追求。人工智能早已滲透到計 算機視覺、自動駕駛、自然語言處理、機器人技術(shù)、推薦系統(tǒng)、語音識別、航空航天等等領(lǐng)域。
AI人工智能實驗箱的學(xué)習(xí)主要分為兩個部分,第一部分為人工智能基礎(chǔ),主要包括:相關(guān)數(shù)學(xué)基礎(chǔ)、編程基礎(chǔ)、機器學(xué)習(xí)、深度神經(jīng)網(wǎng)絡(luò)、ROS基礎(chǔ)與運動學(xué)。第二部分主要為實踐學(xué)習(xí)包括:GPIO與傳感器、機械臂、AI視覺、AI聽覺、物聯(lián)網(wǎng)。完成學(xué)習(xí)后,可以充分了解到人工智能最主流的相關(guān)應(yīng)用。
1.相關(guān)數(shù)學(xué)基礎(chǔ)
教學(xué)課程 | 課程內(nèi)容 |
矩陣論 | 標(biāo)量、向量、矩陣、張量 |
矩陣和向量相乘 | |
單位矩陣和逆矩陣 | |
線性相關(guān)和生成子空間 | |
范數(shù) | |
特殊類型的矩陣和向量 | |
跡運算 | |
Moore-Penrose偽逆 | |
概率與信息論 | 隨機變量與概率分布 |
離散型變量與概率分布律 | |
常見的離散型概率分布 | |
連續(xù)型變量和概率密度函數(shù) | |
常見的連續(xù)性概率分布 | |
聯(lián)合概率 | |
邊緣概率 | |
條件概率 | |
獨立性和條件獨立性 | |
期望、方差和協(xié)方差 | |
信息論 |
教學(xué)課程 | 課程內(nèi)容 |
變量與基本數(shù)據(jù)類型 | 變量 |
基本數(shù)據(jù)類型 | |
列表和元組 | 列表 |
元組 | |
字典與集合 | 字典 |
集合 | |
類和對象 | 面向?qū)ο蟾攀?/span> |
類的定義和使用 | |
屬性 | |
繼承 | |
模塊化程序設(shè)計 | 函數(shù)創(chuàng)建和調(diào)用 |
參數(shù)傳遞 | |
深度學(xué)習(xí)框架簡介 | TensorFlow |
PyTorch | |
Caffe/caffe2 | |
PaddlePaddle | |
Linux開發(fā)環(huán)境簡介 | Ubuntu操作系統(tǒng) |
常用命令行 |
教學(xué)課程 | 課程內(nèi)容 |
基本概念 | 訓(xùn)練集、測試集、驗證集 |
過擬合、欠擬合、泛化 | |
學(xué)習(xí)率、正則化、交叉驗證 | |
K-近鄰算法 | 基本概念 |
K的選取 | |
距離的度量 | |
支持向量機 | 間隔與支持向量 |
對偶問題 | |
核函數(shù) | |
軟間隔與正則化 | |
K-均值聚類 | K-均值聚類 |
決策樹和隨機森林 | 決策樹的基本概念 |
選擇最佳劃分標(biāo)準(zhǔn) | |
隨機森林 | |
神經(jīng)網(wǎng)絡(luò) | 神經(jīng)元模型 |
感知器 | |
多層感知器 | |
經(jīng)驗風(fēng)險和結(jié)構(gòu)風(fēng)險 | |
梯度下降和反向傳播 | |
RBF網(wǎng)絡(luò) | |
超限學(xué)習(xí)機 | |
神經(jīng)網(wǎng)絡(luò)訓(xùn)練技巧 |
教學(xué)課程 | 課程內(nèi)容 |
人工智能 | 人工智能、機器學(xué)習(xí)與深度學(xué)習(xí) |
深度學(xué)習(xí) | 深度學(xué)習(xí)的發(fā)展歷程 |
卷積神經(jīng)網(wǎng)絡(luò) | 發(fā)展歷程 |
基本結(jié)構(gòu) | |
前饋運算與反向傳播 | |
相關(guān)性質(zhì) | |
卷積神經(jīng)網(wǎng)絡(luò)變種 | |
常用卷積神經(jīng)網(wǎng)絡(luò)模型 | |
循環(huán)神經(jīng)網(wǎng)絡(luò) | 循環(huán)神經(jīng)網(wǎng)絡(luò)簡介 |
長短時記憶網(wǎng)絡(luò)神經(jīng) | |
循環(huán)神經(jīng)網(wǎng)絡(luò)的變體 | |
生成對抗網(wǎng)絡(luò) | 生成對抗網(wǎng)絡(luò)簡介 |
生成對抗網(wǎng)絡(luò)基本結(jié)構(gòu) | |
生成對抗網(wǎng)絡(luò)變種 |
實驗課程 | 課程內(nèi)容 |
ROS基礎(chǔ)與運動學(xué) | ROS基礎(chǔ)課程 |
ROS創(chuàng)建工程項目 | |
自定義消息 | |
Server通訊 | |
機械臂URDF模型 | |
機械臂運動學(xué)正反解 | |
MoveIt配置 | |
智能串行總線舵機 | |
PC上位機控制 | |
機械臂自定義學(xué)習(xí)動作組 | |
機械臂關(guān)節(jié)弧度及末端姿態(tài)控制 | |
機械臂工作區(qū)域內(nèi)抓取、搬運 | |
6自由度逆運動學(xué)控制 |
實驗課程 | 課程內(nèi)容 |
Jetson nano GPIO課程 | 雙色LED控制 |
電位器檢測 | |
繼電器控制 | |
輕觸開關(guān)按鍵 | |
PCF8591模數(shù)轉(zhuǎn)換 | |
PS2操縱桿 | |
觸摸開關(guān)控制 | |
直流電機風(fēng)扇 | |
步進電機驅(qū)動 | |
傳感器實驗課程 | 模擬霍爾傳感器 |
模擬溫度傳感器 | |
火焰報警 | |
煙霧傳感器 | |
超聲波傳感器距離檢測 | |
旋轉(zhuǎn)編碼器 | |
紅外避障傳感器 | |
BMP180氣壓傳感器 | |
MPU6050陀螺儀加速度傳感器 | |
循跡傳感器 |
實驗課程 | 課程內(nèi)容 |
機械臂基礎(chǔ)課程 | 用戶按鍵控制 |
蜂鳴器控制實驗 | |
OLED控制實驗 | |
控制單個舵機 | |
同時控制6個舵機動作 | |
讀取舵機當(dāng)前位置 | |
機械臂關(guān)節(jié)標(biāo)定實踐 | |
機械臂關(guān)節(jié)弧度及末端姿態(tài)控制 | |
機械臂舞蹈表演 | |
機械臂搬運色塊實踐 | |
機械臂搬運碼垛色塊實踐 | |
機械臂抓取工作區(qū)域九點標(biāo)定 | |
機械臂抓取工作區(qū)域物塊測試 |
實驗課程 | 課程內(nèi)容 |
AI視覺開發(fā)課程 | 安裝和使用Matplotlib、Pyplot 和 Numpy |
在OpenCV中運行攝像頭 | |
JetCam庫中測試USB攝像頭 | |
OpenCV讀取、寫入和顯示圖像 | |
OpenCV讀取、顯示和保存視頻 | |
OpenCV繪圖函數(shù)使用 | |
OpenCV圖像質(zhì)量和像素操作 | |
OpenCV圖片剪切 | |
OpenCV圖片平移 | |
OpenCV圖片鏡像 | |
OpenCV仿射變換 | |
OpenCV圖片縮放 | |
OpenCV圖片旋轉(zhuǎn) | |
OpenCV圖片處理 | |
OpenCV灰度處理 | |
OpenCV圖像美化 | |
OpenCV邊緣檢測 | |
OpenCV二值化處理 | |
OpenCV矩形圓形繪制 | |
OpenCV文字圖片處理 | |
OpenCV線段繪制 | |
OpenCV彩色圖片直方圖 | |
OpenCV直方圖均衡畫 | |
OpenCV圖片修補 | |
OpenCV亮度增強 | |
OpenCV高斯均值濾波 | |
OpenCV磨皮美白 | |
OpenCV中值濾波 | |
AI視覺與機械臂綜合課程 | 顏色檢測 |
臉部和眼睛檢測 | |
行人檢測 | |
汽車檢測 | |
車牌檢測 | |
目標(biāo)追蹤 | |
定位物體實時位置 | |
攝像頭機械臂物體追蹤 | |
攝像頭機械臂人臉追蹤 | |
色塊抓取分揀實驗 | |
攝像頭ArucoTag識別抓取實驗 | |
AI人工智能機械臂與主人互動實踐 | |
AI人工智能機械臂手勢識別抓取指定色塊進行碼垛 | |
AI人工智能機械臂垃圾分類實踐 | |
嵌入式視覺應(yīng)用 | 圖像分類 |
物體檢測 | |
語義分割 | |
目標(biāo)檢測 | |
人體姿態(tài)動作識別 | |
背景移除 | |
單眼深度圖 |
實驗課程 | 課程內(nèi)容 |
AI聽覺領(lǐng)域前沿算法 | 連接時序分類模型 |
Attention模型 | |
基于HMM的語音識別 | |
Transformer | |
AI聽覺綜合實戰(zhàn) | AI聽覺領(lǐng)域前沿算法 |
在線語音合成 | |
語音聽寫流式 | |
圖靈機器人 | |
AIUI | |
VAD端點檢測 | |
小薇機器人語音對話 | |
Snowboy語音喚醒 | |
語音情感識別 | |
基于 Kaldi 的語音識別實踐 |